Canadian Journal of Statistics

Smoothing parameter selection methods for nonparametric regression with spatially correlated errors

Journal Article

Abstract

When spatial data are correlated, currently available data‐driven smoothing parameter selection methods for nonparametric regression will often fail to provide useful results. The authors propose a method that adjusts the generalized cross‐validation criterion for the effect of spatial correlation in the case of bivariate local polynomial regression. Their approach uses a pilot fit to the data and the estimation of a parametric covariance model. The method is easy to implement and leads to improved smoothing parameter selection, even when the covariance model is misspecified. The methodology is illustrated using water chemistry data collected in a survey of lakes in the Northeastern United States.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.