Canadian Journal of Statistics

Kernel spline regression

Journal Article


The authors propose «kernel spline regression,» a method of combining spline regression and kernel smoothing by replacing the polynomial approximation for local polynomial kernel regression with the spline basis. The new approach retains the local weighting scheme and the use of a bandwidth to control the size of local neighborhood. The authors compute the bias and variance of the kernel linear spline estimator, which they compare with local linear regression. They show that kernel spline estimators can succeed in capturing the main features of the underlying curve more effectively than local polynomial regression when the curvature changes rapidly. They also show through simulation that kernel spline regression often performs better than ordinary spline regression and local polynomial regression.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.