Canadian Journal of Statistics

Estimation of a finite population distribution function based on a linear model with unknown heteroscedastic errors

Journal Article

  • Author(s): María‐José Lombardí, Wenceslao González‐Manteiga, José‐Manuel Prada‐Sánchez
  • Article first published online: 17 Feb 2009
  • DOI: 10.1002/cjs.5550330203
  • Read on Online Library
  • Subscribe to Journal

Abstract

The authors consider a finite population ρ = {(Yk, xk), k = 1,…,N} conforming to a linear superpopulation model with unknown heteroscedastic errors, the variances of which are values of a smooth enough function of the auxiliary variable X for their nonparametric estimation. They describe a method of the Chambers‐Dunstan type for estimation of the distribution of {Yk, k = 1,…, N} from a sample drawn from without replacement, and determine the asymptotic distribution of its estimation error. They also consider estimation of its mean squared error in particular cases, evaluating both the analytical estimator derived by “plugging‐in” the asymptotic variance, and a bootstrap approach that is also applicable to estimation of parameters other than mean squared error. These proposed methods are compared with some common competitors in simulation studies.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.