Canadian Journal of Statistics

Réduction de la variance dans les sondages en présence d'information auxiliarie: Une approache non paramétrique par splines de régression

Journal Article

Abstract

The author considers the use of auxiliary information available at population level to improve the estimation of finite population totals. She introduces a new type of model‐assisted estimator based on nonparametric regression splines. The estimator is a weighted linear combination of the study variable with weights calibrated to the B‐splines known population totals. The author shows that the estimator is asymptotically design‐unbiased and consistent under conditions which do not require the superpopulation model to be correct. She proposes a design‐based variance approximation and shows that the anticipated variance is asymptotically equivalent to the Godambe‐Joshi lower bound. She also shows through simulations that the estimator has good properties.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.