Canadian Journal of Statistics

On describing multivariate skewed distributions: A directional approach

Journal Article

Abstract

Most multivariate measures of skewness in the literature measure the overall skewness of a distribution. These measures were designed for testing the hypothesis of distributional symmetry; their relevance for describing skewed distributions is less obvious. In this article, the authors consider the problem of characterizing the skewness of multivariate distributions. They define directional skewness as the skewness along a direction and analyze two parametric classes of skewed distributions using measures based on directional skewness. The analysis brings further insight into the classes, allowing for a more informed selection of classes of distributions for particular applications. The authors use the concept of directional skewness twice in the context of Bayesian linear regression under skewed error: first in the elicitation of a prior on the parameters of the error distribution, and then in the analysis of the skewness of the posterior distribution of the regression residuals.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.