Canadian Journal of Statistics

Pseudo‐empirical likelihood ratio confidence intervals for complex surveys

Journal Article

Abstract

The authors show how an adjusted pseudo‐empirical likelihood ratio statistic that is asymptotically distributed as a chi‐square random variable can be used to construct confidence intervals for a finite population mean or a finite population distribution function from complex survey samples. They consider both non‐stratified and stratified sampling designs, with or without auxiliary information. They examine the behaviour of estimates of the mean and the distribution function at specific points using simulations calling on the Rao‐Sampford method of unequal probability sampling without replacement. They conclude that the pseudo‐empirical likelihood ratio confidence intervals are superior to those based on the normal approximation, whether in terms of coverage probability, tail error rates or average length of the intervals.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.