Canadian Journal of Statistics

Strictly monotone and smooth nonparametric regression for two or more variables

Journal Article

Abstract

The authors propose a new monotone nonparametric estimate for a regression function of two or more variables. Their method consists in applying successively one‐dimensional isotonization procedures on an initial, unconstrained nonparametric regression estimate. In the case of a strictly monotone regression function, they show that the new estimate and the initial one are first‐order asymptotic equivalent; they also establish asymptotic normality of an appropriate standardization of the new estimate. In addition, they show that if the regression function is not monotone in one of its arguments, the new estimate and the initial one have approximately the same Lp‐norm. They illustrate their approach by means of a simulation study, and two data examples are analyzed.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.