Canadian Journal of Statistics

On a mixture vector autoregressive model

Journal Article


The authors show how to extend univariate mixture autoregressive models to a multivariate time series context. Similar to the univariate case, the multivariate model consists of a mixture of stationary or nonstationary autoregressive components. The authors give the first and second order stationarity conditions for a multivariate case up to order 2. They also derive the second order stationarity condition for the univariate mixture model up to arbitrary order. They describe an EM algorithm for estimation, as well as a diagnostic checking procedure. They study the performance of their method via simulations and include a real application.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.