Journal of Time Series Analysis

A Robbins–Monro Algorithm for Non‐Parametric Estimation of NAR Process with Markov Switching: Consistency

Journal Article

We approach the problem of non‐parametric estimation for autoregressive Markov switching processes. In this context, the Nadaraya–Watson‐type regression functions estimator is interpreted as a solution of a local weighted least‐square problem, which does not admit a closed‐form solution in the case of hidden Markov switching. We introduce a non‐parametric recursive algorithm to approximate the estimator. Our algorithm restores the missing data by means of a Monte Carlo step and estimates the regression function via a Robbins–Monro step. We prove that non‐parametric autoregressive models with Markov switching are identifiable when the hidden Markov process has a finite state space. Consistency of the estimator is proved using the strong α‐mixing property of the model. Finally, we present some simulations illustrating the performances of our non‐parametric estimation procedure.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.