Journal of Time Series Analysis

A New Recursive Estimation Method for Single Input Single Output Models

Journal Article

This article is devoted to a new recursive estimation method for dynamic time series models, more precisely for single input single output models. In that method, the recurrence for updating the Hessian is avoided, but the recurrence for updating the estimator makes use of the Fisher information matrix. The asymptotic properties, consistency and asymptotic normality, of the new estimator are obtained under weak assumptions. Monte Carlo experiments and examples indicate that the estimates converge well, comparatively with alternative methods.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.