Journal of Time Series Analysis

Functional Generalized Autoregressive Conditional Heteroskedasticity

Journal Article

Heteroskedasticity is a common feature of financial time series and is commonly addressed in the model building process through the use of autoregressive conditional heteroskedastic and generalized autoregressive conditional heteroskedastic (GARCH) processes. More recently, multivariate variants of these processes have been the focus of research with attention given to methods seeking an efficient and economic estimation of a large number of model parameters. Because of the need for estimation of many parameters, however, these models may not be suitable for modelling now prevalent high‐frequency volatility data. One potentially useful way to bypass these issues is to take a functional approach. In this article, theory is developed for a new functional version of the GARCH process, termed fGARCH. The main results are concerned with the structure of the fGARCH(1,1) process, providing criteria for the existence of strictly stationary solutions both in the space of square‐integrable and continuous functions. An estimation procedure is introduced, and its consistency and asymptotic normality are verified. A small empirical study highlights potential applications to intraday volatility estimation.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.