2nd IMA Conference on Inverse Problems From Theory to Application


The 2nd IMA Conference On Inverse Problems From Theory To Application willtake place from 4 to 6 Spetember 2019 at University College London.

An inverse problem refers to a situation where the quantity of interest cannot be measured directly, but only through an action of a nontrivial operator of which it is a parameter. The corresponding operator, also called forward operator, stems from a physical application modelling. Prominent examples include: Radon and Fourier transforms for X-ray CT and MRI, respectively or partial differential equations, e.g. EIT or DOT.

The prevalent characteristics of inverse problems is their ill-posedness i.e. lack of uniqueness and/or stability of the solution. This situation is aggravated by the physical limitations of the measurement acquisition such as noise or incompleteness of the measurements. Inverse problems are ubiquitous in applications from bio-medical, science and engineering to security screening and industrial process monitoring. The challenges span from the analysis to efficient numerical solution.

This conference will bring together mathematicians and statisticians, working on theoretical and numerical aspects of inverse problems, as well as engineers, physicists and other scientists, working on challenging inverse problem applications. We welcome industrial representatives, doctoral students, early career and established academics working in this field to attend.

Topic list

Inverse problems in partial differential equations (Memorial Lecture for Slava Kurylev)
Model and data driven methods for inverse problems
Optimization and statistical learning
Statistical inverse problems

Invited Speakers

Julie Delon (MAP5, Paris Descartes University)
Markus Haltmeier (University of Innsbruck)
Mike Hobson (University of Cambridge)
Matti Lassas (University of Helsinki)
Gabriel Peyre (DMA, École Normale Supérieure)
Michael Unser (EPFL)

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.