
Matrix-variate logistic regression is useful in facilitating the relationship between the binary response and matrix-variates which arise commonly from medical imaging research. However, such a model is impaired by the presence of the response misclassification. It is imperative to account for the misclassification effects when employing matrix-variate logistic regression to handle such data. In this paper, the authors develop two inferential methods which account for the misclassification effects. The first method, called an imputation method, roots in the score function derived from the misclassification-free context, and replaces the involved response variable with an unbiased pseudo-response variable that is expressed in terms of the observed surrogate measurement. The second method is to directly derive the likelihood function for the observed response surrogate and then conduct estimation accordingly. the authors’ development is carried out for two settings where misclassification rates are either known or estimated from validation data. The proposed methods are justified both theoretically and empirically. We analyze the Breast Cancer Wisconsin (Prognostic) data with the proposed methods.
More Details