Free access to paper on 'A Bayesian scoring rule on clustered event data for familial risk assessment'


  • Author: Statistics Views
  • Date: 09 July 2018

Each week, we select a recently published article and provide free access. This week's is from Biometrical Journal and is available from the January 2018 issue.

A Bayesian scoring rule on clustered event data for familial risk assessment – An example from colorectal cancer screening

Anna K. Rieger and Ulrich R. Mansmann

Biometrical Journal, Volume 60, Issue 1, January 201, pages 115-127, DOI:

The introduction is provided below:

thumbnail image: Free access to paper on 'A Bayesian scoring rule on clustered event data for familial risk assessment'

Colorectal cancer screening is well established. The identification of high risk populations is the key to implement effective risk‐adjusted screening. Good statistical approaches for risk prediction do not exist. The family's colorectal cancer history is used for identification of high risk families and usually assessed by a questionnaire. This paper introduces a prediction algorithm to designate a family for colorectal cancer risk and discusses its statistical properties. The new algorithm uses Bayesian reasoning and a detailed family history illustrated by a pedigree and a Lexis diagram. The algorithm is able to integrate different hereditary mechanisms that define complex latent class or random factor structures. They are generic and do not reflect specific genetic models. This is comparable to strategies in complex segregation analysis.

Furthermore, the algorithm can integrate different statistical penetrance models for right censored event data. Computational challenges related to the handling of the likelihood are discussed. Simulation studies assess the predictive quality of the new algorithm in terms of ROC curves and corresponding AUCs. The algorithm is applied to data of a recent study on familial colorectal cancer risk. Its predictive performance is compared to that of a questionnaire currently used in screening for familial colorectal cancer. The results of the proposed algorithm are robust against different inheritance models. Using the simplest hereditary mechanism, the simulation study provides evidence that the algorithm improves detection of families with high cancer risk in comparison to the currently used questionnaire. The applicability of the algorithm goes beyond the field of colorectal cancer.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.