Journal of Time Series Analysis

The Dependent Random Weighting

Journal Article

We propose a new resampling method, the dependent random weighting, for both time series and random fields. The method is a generalization of the traditional random weighting in that the weights are made to be temporally or spatially dependent and are adaptive to the configuration of the data. Unlike the block‐based bootstrap or subsampling methods, the dependent random weighting can be used for irregularly spaced time series and spatial data without any implementational difficulty. Consistency of the distribution approximation is shown for both equally and unequally spaced time series. Simulation studies illustrate the finite sample performance of the dependent random weighting in comparison with the existing counterparts for both one‐dimensional and two‐dimensional irregularly spaced data.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.