Canadian Journal of Statistics

Data depth‐based nonparametric scale tests

Journal Article

Abstract

Liu and Singh (1993, 2006) introduced a depth‐based d‐variate extension of the nonparametric two sample scale test of Siegel and Tukey (1960). Liu and Singh (2006) generalized this depth‐based test for scale homogeneity of k ≥ 2 multivariate populations. Motivated by the work of Gastwirth (1965), we propose k sample percentile modifications of Liu and Singh's proposals. The test statistic is shown to be asymptotically normal when k = 2, and compares favorably with Liu and Singh (2006) if the underlying distributions are either symmetric with light tails or asymmetric. In the case of skewed distributions considered in this paper the power of the proposed tests can attain twice the power of the Liu‐Singh test for d ≥ 1. Finally, in the k‐sample case, it is shown that the asymptotic distribution of the proposed percentile modified Kruskal‐Wallis type test is χ2 with k − 1 degrees of freedom. Power properties of this k‐sample test are similar to those for the proposed two sample one. The Canadian Journal of Statistics 39: 356–369; 2011 © 2011 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.