Canadian Journal of Statistics

A resampling approach to estimate variance components of multilevel models

Journal Article

Abstract

In a multilevel model for complex survey data, the weight‐inflated estimators of variance components can be biased. We propose a resampling method to correct this bias. The performance of the bias corrected estimators is studied through simulations using populations generated from a simple random effects model. The simulations show that, without lowering the precision, the proposed procedure can reduce the bias of the estimators, especially for designs that are both informative and have small cluster sizes. Application of these resampling procedures to data from an artificial workplace survey provides further evidence for the empirical value of this method. The Canadian Journal of Statistics 40: 150–171; 2012 © 2012 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.