Australian & New Zealand Journal of Statistics

ORDER SELECTION IN ARMA MODELS USING THE FOCUSED INFORMATION CRITERION

Journal Article

Summary

This paper develops a new approach for order selection in autoregressive moving average models using the focused information criterion. This criterion minimizes the asymptotic mean squared error of the estimator of a parameter of interest. Simulation studies indicate that the suggested criterion is quite effective and comparable to the Akaike information criterion, the corrected Akaike information criterion and the Bayesian information criterion in autoregressive moving average order selection. The use of the focused information criterion for the simultaneous selection of regression variables and order of the error process in a linear regression model with autoregressive moving average errors is also considered.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.