Mathematische Nachrichten

Expansion of pinched hypersurfaces of the Euclidean and hyperbolic space by high powers of curvature

Early View

Abstract We prove convergence results for expanding curvature flows in the Euclidean and hyperbolic space. The flow speeds have the form , where and F is a positive, strictly monotone and 1‐homogeneous curvature function. In particular this class includes the mean curvature . We prove that a certain initial pinching condition is preserved and the properly rescaled hypersurfaces converge smoothly to the unit sphere. We show that an example due to Andrews–McCoy–Zheng can be used to construct strictly convex initial hypersurfaces, for which the inverse mean curvature flow to the power loses convexity, justifying the necessity to impose a certain pinching condition on the initial hypersurface.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.