International Transactions in Operational Research

Parallel matheuristics for the discrete unit commitment problem with min‐stop ramping constraints

Early View

Abstract

The discrete unit commitment problem with min‐stop ramping constraints optimizes the daily production of thermal power plants, subject to an operational reactivity of thermal units in a 30‐minute delay. Previously, mixed integer programming (MIP) formulations aimed at an exact optimization approach. This paper derives matheuristics to face the short time limit imposed by the operational constraints. Continuous relaxations guide the search for feasible solutions exploiting tailored variable fixing strategies. Parallel matheuristics are derived considering complementary strategies in parallel. Tests were performed on more than 600 real‐life instances. Our parallel matheuristic provides high‐quality solutions and outperforms the MIP approach in the time limits imposed by the industrial application. This paper illustrates a special interest for matheuristics in industrial highly constrained problems: many tailored neighborhood searches can be derived from an MIP formulation, and their combination in a parallel scheme improves the solution quality as well as the consistency of the heuristic.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.