International Transactions in Operational Research

Additive centralized and Stackelberg DEA models for two‐stage system with shared resources

Early View


Data envelopment analysis (DEA) is a nonparametric programming method for evaluating the efficiency performance of decision making units (DMUs) with multiple inputs and outputs. The classic DEA model cannot provide accurate efficiency measurement and inefficiency sources of DMUs with complex internal structure. The network DEA approach opens the “black box” of DMU by taking its internal operations into consideration. The complexities of DMU's internal structure involve not only the organization of substages, but also the inputs allocation and the operational relations among the individual stages. This paper proposes a set of additive DEA models to evaluate and decompose the efficiency of a two‐stage system with shared inputs and operating in cooperative and Stackelberg game situations. Under the assumptions of cooperative and noncooperative gaming, the proposed models are able to highlight the effects of strategic elements on the efficiency formation of DMUs by calculating the optimal proportion of the shared inputs allocated to each stage. The case of information technology in the banking industry at the firm level, as discussed by Wang, is revisited using the developed DEA approach.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.