Educational Measurement: Issues and Practice

Five Methods for Estimating Angoff Cut Scores with IRT

Journal Article

Abstract

This article illustrates five different methods for estimating Angoff cut scores using item response theory (IRT) models. These include maximum likelihood (ML), expected a priori (EAP), modal a priori (MAP), and weighted maximum likelihood (WML) estimators, as well as the most commonly used approach based on translating ratings through the test characteristic curve (i.e., the IRT true‐score (TS) estimator). The five methods are compared using a simulation study and a real data example. Results indicated that the application of different methods can sometimes lead to different estimated cut scores, and that there can be some key differences in impact data when using the IRT TS estimator compared to other methods. It is suggested that one should carefully think about their choice of methods to estimate ability and cut scores because different methods have distinct features and properties. An important consideration in the application of Bayesian methods relates to the choice of the prior and the potential bias that priors may introduce into estimates.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.