An exponential–gamma mixture model for extreme Santa Ana winds

Early View

We analyze the behavior of extreme winds occurring in Southern California during the Santa Ana wind season using a latent mixture model. This mixture representation is formulated as a hierarchical Bayesian model and fit using Markov chain Monte Carlo. The two‐stage model results in generalized Pareto margins for exceedances and generates temporal dependence through a latent Markov process. This construction induces asymptotic independence in the response, while allowing for dependence at extreme, but subasymptotic, levels. We compare this model with a frequentist analogue where inference is performed via maximum pairwise likelihood. We use interval censoring to account for data quantization and estimate the extremal index and probabilities of multiday occurrences of extreme Santa Ana winds over a range of high thresholds.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.