Scandinavian Journal of Statistics

Bayesian Estimators for Small Area Models Shrinking Both Means and Variances

Journal Article

Abstract

For small area estimation of area‐level data, the Fay–Herriot model is extensively used as a model‐based method. In the Fay–Herriot model, it is conventionally assumed that the sampling variances are known, whereas estimators of sampling variances are used in practice. Thus, the settings of knowing sampling variances are unrealistic, and several methods are proposed to overcome this problem. In this paper, we assume the situation where the direct estimators of the sampling variances are available as well as the sample means. Using this information, we propose a Bayesian yet objective method producing shrinkage estimation of both means and variances in the Fay–Herriot model. We consider the hierarchical structure for the sampling variances, and we set uniform prior on model parameters to keep objectivity of the proposed model. For validity of the posterior inference, we show under mild conditions that the posterior distribution is proper and has finite variances. We investigate the numerical performance through simulation and empirical studies.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.